Strong Approximation for a Toric Variety

نویسندگان

چکیده

Let X be a toric variety over number field k with k[X]× = k×. W ⊂ closed subset of codimension at least 2. We prove that satisfies strong approximation algebraic Brauer-Manin obstruction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toric difference variety

In this paper, the concept of toric difference varieties is defined and four equivalent descriptions for toric difference varieties are presented in terms of difference rational parametrization, difference coordinate rings, toric difference ideals, and group actions by difference tori. Connections between toric difference varieties and affine N[x]-semimodules are established by proving the corr...

متن کامل

The Signature of a Toric Variety

We identify a combinatorial quantity (the alternating sum of the h-vector) defined for any simple polytope as the signature of a toric variety. This quantity was introduced by R. Charney and M. Davis in their work, which in particular showed that its nonnegativity is closely related to a conjecture of H. Hopf on the Euler characteristic of a nonpositively curved manifold. We prove positive (or ...

متن کامل

The Functor of a Smooth Toric Variety

(1) Y 7→ {line bundle quotients of O Y } . This is easy to prove since a surjection O Y → L gives n + 1 sections of L which don’t vanish simultaneously and hence determine a map Y → Pnk . The goal of this paper is to generalize this representation to the case of an arbitrary smooth toric variety. We will work with schemes over an algebraically closed field k of characteristic zero, and we will ...

متن کامل

strong approximation for itô stochastic differential equations

in this paper, a class of semi-implicit two-stage stochastic runge-kutta methods (srks) of strong global order one, with minimum principal error constants are given. these methods are applied to solve itô stochastic differential equations (sdes) with a wiener process. the efficiency of this method with respect to explicit two-stage itô runge-kutta methods (irks), it method, milstien method, sem...

متن کامل

The Spectral Density Function of a Toric Variety

For a Kähler manifold X,ω with a holomorphic line bundle L and metric h such that the Chern form of L is ω, the spectral measures are the measures μN = P |sN,i| ν, where {sN,i}i is an L -orthonormal basis for H(X,L ), and ν is Liouville measure. We study the asymptotics in N of μN for X,L a Hamiltonian toric manifold, and give a very precise expansion in terms of powers 1/N and data on the mome...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Mathematica Sinica

سال: 2021

ISSN: ['1439-7617', '1439-8516']

DOI: https://doi.org/10.1007/s10114-021-8193-7